Zamolodchikov operator-valued relations for WZNW model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zamolodchikov operator-valued relations for SL(2, R)k WZNW model

An infinite set of operator-valued relations that hold for reducible representations of the ˆ sl(2)k algebra is derived. These relations are analogous to those recently obtained by Zamolodchikov which involve logarithmic fields associated to the Virasoro degenerate representations in Liouville theory. The fusion rules of the ˆ sl(2)k algebra turn out to be a crucial step in the analysis. The po...

متن کامل

Zamolodchikov relations and Liouville hierarchy in SL(2, R)k WZNW model

We study the connection between Zamolodchikov operator-valued relations in Liouville field theory and in the SL(2,R)k WZNW model. In particular, the classical relations in SL(2,R)k can be formulated as a classical Liouville hierarchy in terms of the isotopic coordinates, and their covariance is easily understood in the framework of the AdS3/CFT2 correspondence. Conversely, we find a closed expr...

متن کامل

Knizhnik-Zamolodchikov-type equations for gauged WZNW models

We study correlation functions of coset constructions by utilizing the method of gauge dressing. As an example we apply this method to the minimal models and to the Witten 2D black hole. We exhibit a striking similarity between the latter and the gravitational dressing. In particular, we look for logarithmic operators in the 2D black hole. e-mail: [email protected] e-mail: a.lewis1@...

متن کامل

Operator-valued tensors on manifolds

‎In this paper we try to extend geometric concepts in the context of operator valued tensors‎. ‎To this end‎, ‎we aim to replace the field of scalars $ mathbb{R} $ by self-adjoint elements of a commutative $ C^star $-algebra‎, ‎and reach an appropriate generalization of geometrical concepts on manifolds‎. ‎First‎, ‎we put forward the concept of operator-valued tensors and extend semi-Riemannian...

متن کامل

Egoroff Theorem for Operator-Valued Measures in Locally Convex Cones

In this paper, we define the almost uniform convergence and the almost everywhere convergence for cone-valued functions with respect to an operator valued measure. We prove the Egoroff theorem for Pvalued functions and operator valued measure θ : R → L(P, Q), where R is a σ-ring of subsets of X≠ ∅, (P, V) is a quasi-full locally convex cone and (Q, W) is a locally ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nuclear Physics B

سال: 2004

ISSN: 0550-3213

DOI: 10.1016/j.nuclphysb.2004.07.007